## Redrawing Grey Cities to Climate Resilient Sponge Cities

----

Dr. Nian She Tsinghua University Innovation Center in Zhuhai

# **Rapid Urbanization in China**



### **Forest of Concrete**



### landscape only for Aesthetics





### Landscape in Northern China (Precipitation 450-550mm/yr)

# Where are These Native species?

# In 1980s This Blvd Becomes a Model for Many Chinese Cities



### Don't Understand Why the Landscape Architects Designed the Road in such a Way



# The Consequences 7/21/2012 Beijing



# Number of cities suffering from flooding threats in China from 2010 - 2016



# Eutrophication of Lakes

# 东湖官桥湖发生水华

### Clear Evidence of Climate Change in Macau



### WRF Model Typhoon Hato

### Simulation with WRF model at 4-km Grid Spacing and ERA-Interim boundary conditions August 22-23 2017, one-hour time step

Hato IR Image Time: 1 of 48



Q(# 0W m-2) 75 100 121 100 175 200 225 200 275 300 125





### **How to Solve These Problems**

Flooding Water Pollution Extreme Weather Caused by Climate Change Aesthetic Perception





The Sponge City is referred to sustainable urban development including flood control, water conservation, water quality improvement, natural ecosystem protection, and water resources utilization. It also makes cities more resilient to climate change.

**Today's Concrete Forest** 

**Functioning like Forest** 



### **30 Pilot Sponge Cities Chosen by the Central Government (2015 – 2016)**



### First (16 Cities) (2015)

Qianan, Baicheng, Zhenjiang, Jiaxing, Chizhou, Xiamen, Pingxiang, Jinan, Hebi, Wuhan, Changde, Nanning, Chongqin, Suining, Guian New District and Xixian New District

### • Second (14 Cities) (2016)

Fuzhou, Zhuhai, Ningbo, Yuxi, Dalian, Shenzhen, Shanghai, Qinyang, Xining, Sanya, Qingdao, Guyuan, Tianjin, Beijing

### **Sponge City Construction**

- By year 2020, 20% developed urban area must be retrofit to meet the sponge city target
- By year 2030, 80% developed urban area must be retrofit to meet the sponge city target
- The construction cost is about \$15-22.5 million USD/km<sup>2</sup>
- The total investment is estimated about \$0.9 trillion USD

Source: Economic Information Daily



### **Investment of Pilot Sponge Cities**

### Wuhan: \$2.44 billion

- Chongqing : \$1.05 billion
- ♦ Nanning : \$1.3 billion
- ♦ Zhenjiang: \$1.2 billion
- ♦ Jinan: \$1.17 billion
- ♦ Jiaxing: \$0.34 billion
- ♦ Among the first 16 pilot cities, the total area is 450 km<sup>2</sup>
- The investment is about \$12.97 billion with 3 years, \$3.6 billion come from the central government.

### Where does the money come from

- Central and provincial governments fund part of the construction cost as incentive to these
- Public-Private Partnership
  - Private sectors provide initial fund for the constructions
  - Governments will purchase the services to pay for part of the cost
  - Pay-for-performance
  - Pay for the operations and maintenances
- Sponge City Construction Industry Alliance
  - System design
  - Investment and finance
  - Implementation
  - Innovation
  - Products/Production

# **ZHENJIANG SPONGE CITY**

# **Project Overview**



**Project Scope:** Assess and plan stormwater management retrofits for 22 km<sup>2</sup> of watersheds within the City of Zhenjiang

### **Project Goals:**

- Convey 30-year storm event (with no city water-logging)
- Improve Water Quality of Receiving Water to Chinese Class III
- Treat 75% of annual runoff volume
- Reduce annual TSS load by 60%.

# Background

- Zhenjiang City is located at Jiangsu Providence of China
- It is one of the 16 pilot "sponge cities" chosen by the federal government in 2015
- The pilot area is 22 square kilometers of old high density urban residential and business neighborhood



## The Problems

### 1. Flooding (2015-06-29)



### 2. Water Quality Deterioration caused by CSO/Stormwater Runoff







# Data Collection and Initial Investigation

### • Weather data

- 🔶 Торо
- ♦ Land use
- Drainage network
- River and Lakes
- ♦ Site visit
- SWMM model
- Monitoring network
- SWMM Calibration
- Flood location identification

# **Arial Photo**

# Landuse

# Topography

# Drainage Network

8 8868 8888 8888

10800

### Delineation of a Neighborhood

# Drainage Sub-Basins

# SWMM Model



# Initial Validation



Hydrograph of a sub basin (Event simulation)

# Initial Wash - off





### SWMM Calibration to Determine model parameters



### **Flood Locations**

These communities are well known for flooding every year. These photos were taken on 6/29/2015 before LID construction and retrofit.





### **Redraw the City: Green + Grey + Blue Solutions**


In my opinion the Sponge City is the redrawing of urban landscape to meet the challenge of climate change, flooding, water shortage, water pollution and water culture. The implementation of the sponge city should be an integrated system of grey and green infrastructures that reduce the runoff and pollution from the source, control the runoff and pollution inline and treat the runoff at the end of the pipe. Rivers and lakes can also be used as water quality channel for pollution removal and establish aquatic habitats



## Retrofit Old Neighborhoods Using LID

| Colores and | No | Basin | boundary                        | area<br>(km²) | Drainage | Receiving<br>water |
|-------------|----|-------|---------------------------------|---------------|----------|--------------------|
|             |    | 绿竹巷片区 | 南起花山湾新村,西自烈士<br>陵园墓,北至金山湖       | 0.79          | CSO      | 金山湖<br>(原北湖)       |
|             | 2  | 解放路片区 | 北自长江路,南到中山东路,<br>西起古运河东侧,东至第一楼街 | 1.22          | separate | 金山湖<br>(原北湖)       |
|             | 3  | 江滨片区  | 南自镇江市江南学校,东起<br>虹桥河西侧,北至滨水路     | 1.81          | separate | 金山湖<br>(原北湖)       |
|             | 81 |       |                                 |               |          |                    |



Build a Resilience and Aesthetic Landscape in an Old Ultra Dense Residential Community

There are hundreds of communities within 22 km<sup>2</sup>

#### Cause Study – Second Community of Riverfront Community



This is a high density neighborhood built in 1970s. Most residents are low income retirees. Due to the lack of maintenance, this neighborhood had endured annual flooding, deterioration of aging infrastructure, lack of appropriate sanitary conditions and no parking lot. Young people moved out



Flooding Event in 2015 before the retrofit



For decades there was no maintenance. The pavements in the neighborhood were damaged. Many green spaces were destroyed



The garbage were dumped into landscape sites



Due to lack of parking space some green space became "illegal parking lots"



#### **Our Approach**





Design minus principle is minimizing the landscape intervention because this neighborhood has about 40 years of history. Residents spent most of their life in the neighborhood. Keep their memory is so important in the design work. After the retrofit it is desirable to minimize the maintenance cost, and encourage the residents to maintain their vegetable gardens and fruit trees.

## **Design Process**

### LID design process:

- 1. Site Investigation
- 2. Survey drainage network
- 3. Subcatchment delineation
- 4. Communication with residents
- 5. Soil infiltration testing
- 6. LID layout and modeling
- 7. Separation
- 8. Monitoring



Design



#### **Section Design**



- 1 Bioretention
- 2 Recreation space
- 3 Porous pavement
- 4 Building
- 5 Yard





#### Experiments before the construction



Growing Media Test



**Plants Selections** 



Infiltration Test



Observation of Plant Growth

#### Site Delineation and Modeling:

### Delineation: Rooftop, Road, Green Space and "Yard" Model: SWMM



| ******************         | Volume    | Depth   |
|----------------------------|-----------|---------|
| Runoff Quantity Continuity | hectare-m | mm      |
| ******************         |           |         |
| Initial LID Storage        | 0.022     | 11.521  |
| Total Precipitation        | 0.413     | 219.979 |
| Evaporation Loss           | 0.000     | 0.000   |
| Infiltration Loss          | 0.052     | 27.927  |
| Surface Runoff             | 0.189     | 100.574 |
| Final Surface Storage      | 0.193     | 102.629 |
| Continuity Error (%)       | 0.160     |         |

#### 30yr-24hr





Node junction 1 Total Inflow



Concluding: LID can delay 13 hours of discharge at the outfall. (Without LID it is just 1 hour)





Annual rainfall vs discharge

#### 2005 rainfall data (5-min)

### Data Analysis: 113 events, 7 events exceed 34.6mm, 6.2%. Annual rainfall 1032.6mm, Discharged runoff 173.5mm, 16.8%.

注: 以上年总降雨量及实测降雨量均参考2005年南京实测数据。

1YRS-2HR径流控制效果对比图 1yr-2h: 0.5 0 5 0.4 10 15 0.3 3 20 雨型 降雨量 No-LID 25 -LID 30 35 0.1 40 0 45 60 20 40 80 100 120 0 时间 (min) Runoff Peak Peak Rainfall **Peak runoff** Runoff Volume rainfall runoff Coefficient  $(\mathbf{mm})$  $(m^{3}/s)$ (min) (min)  $(m^{3})$ Before 0.24 0.85 37.5 40 50 598 After 198 0.07 0.28 37.5 40 50

模型模拟

#### 72% runoff volume reduction



#### Volume Reduction 54%, Peak Reduction 43%, Peak shifting



#### Runoff volume reduction 47.5%, No significant reduction of peak

30yr – 24hr



Then are 24 spots of tsatter or Eloridow working 5782m3, 12 nd poits post coorderstand fix the pth. Flood time 30 min.

#### Design Process



Design Discussion



Outreach



**Public Comments** 

#### Construction

















#### Completion





#### **During Heavy Storm**



After completion of the project the neighborhood experience two heavy storm events. One is 138 mm rainfall in 2016 and another is 125mm rainfall in 2017.

#### **Monitoring Results**







|                           | 人は生き   | 100.046/1 | 19.946-11 | Ming/11 | Intine/I | 155.0.05      |
|---------------------------|--------|-----------|-----------|---------|----------|---------------|
| 8.6.11(R3)<br>(4/11       | 47.10  | 66.13     | 3.21      | 1.49    | 125.08   | *****         |
| 意入注意<br>(a <sup>r</sup> ) | 26.7   | 16.38     | 0.07      | 4.36    | 399.48   | 小田屋城          |
| 信用金譜(A)<br>(mg/1)         | 10.0   | 16.77     |           | 4.19    | 4-17     | #HR8          |
| 80,000<br>(*)             | 333299 | 10,11     | 8,11      | 31.37   | 116.65   | <b>BARRAN</b> |

|                  |       | 信用装合<br>荷 (14) | 348-219<br>8 (b) |
|------------------|-------|----------------|------------------|
| 84/1838<br>94/11 | -     |                |                  |
| 8A88<br>(#)      | 10.19 | 8.7019         | 6.9827           |
| 国家会営課題<br>194/0- | 16.00 |                |                  |
| (本)              | 4.0   | 3.044          |                  |





95% Flow Reduction, and 98% TSS Removal

#### An Ideal Place for Social Interactions of the Residents



#### Beautiful Landscape – Reduced Symptoms of Depression and Anxiety





#### Happiness – Yong People bring their Children back



# Increase Parking Lot



## Too dense to retrofit



# Regional Treatment (End of Pipe)






# PLAN



3

L



Vertical greening



Roof greening

Rainwater tank

Storage tank

Ecological planter

Basket filter





In-line treatment

Infiltration trench

Permeable pavement

swale









L L

1 1 1



## **PLAN**



#### 围例 LEGEND :

- 抵达处和开敞广场 Arrival and Open Plaza
- 2. 展示中心 **Exhibition Center**
- 3. 休闲区 **Recreation Area**
- 4. 下沉草坪 Sunken Lawn
- 5. 湿地与溪流 Wet Land and Stream

- 多级生物滤池 Regional Storm Water Treatment Facilities Building
- 7. 栈道 Boardwalk
- 8. 次入口 Secondary Entrance
- 9. 车行通道 Vehicular Access
- 10.雨水庭院 Rain Garden

- 11.屋顶花园
- Roof Garden
- 12.空中廊道
- Future Staff Parking 13.公园
- Public Park
- 14.泵站主入口 Main Entrance Pump Station
- 15.次入口
- Secondary Entrance

- 21. 大极广场 TI-CHI Plaza
- 17. 垃圾站 Rubbish Bin Collection Building 18.巴士转换站
- **Bus Interchange**

16. 泵站 Pump Station

- 19. 庭院
- Courtyard
- 20. 户外健身区 Outdoor fitness

SCALE 1:100









































# Welcome to Sponge City Park

### **Change Concrete Channel to Water Quality Channel**

Hongqiao Channel is a spill way that receives CSO and SSO from large area of the city. The overflow is about 30,000 m<sup>3</sup> for 1" rainfall The channel had no habitat due to worse water quality, and it smelled terrible during storm events







### Fix it (Design)



### Construction









### Completion



### Water Quality Channel In Zhenjiang





### Water Quality Channel In Zhenjiang

#### Water Quality Before





Water Quality After

|               | 测量参数 |                 |                |                 |              |              |               |  |  |  |
|---------------|------|-----------------|----------------|-----------------|--------------|--------------|---------------|--|--|--|
| 取样时间          | pН   | COD (<br>mg/L)  | BOD;<br>(mg/L) | NH3-N<br>(mg/L) | TN<br>(mg/L) | TP<br>(mg/L) | TSS<br>(mg/L) |  |  |  |
| 2015.6.5      |      | 11.8            | 1,3            | 0,133           |              | 0.097        |               |  |  |  |
|               |      | 47.2            | 0.9            | 0.073           |              | 0.092        |               |  |  |  |
| 2015. 6. 5    |      | 24.2            |                |                 |              |              |               |  |  |  |
|               |      | 19.5            |                | - 11            |              |              |               |  |  |  |
| 2015. 6. 8    |      | 27.7            |                | 100             |              |              |               |  |  |  |
|               |      |                 |                | 0.503           |              |              |               |  |  |  |
| 2015. 6. 18   | 7.4  | 18, 8           |                | 0.493           |              |              |               |  |  |  |
|               | 7.5  | 26.9            |                | 0.382           |              |              |               |  |  |  |
| 2015, 6, 19   | 7.48 | 21.6            |                |                 |              |              |               |  |  |  |
|               | 7.62 | 1000            |                |                 | 14.1         |              |               |  |  |  |
| 20. 15. 6. 30 | 7.36 | 39              |                |                 |              | 1 III-       | 34            |  |  |  |
|               | 7,37 | - 64            | 100            | 1.20            |              | 0.000        | 21            |  |  |  |
| 2015. 7. 1    | 7,61 |                 |                |                 |              | 0.000        | 26            |  |  |  |
|               | 7.53 |                 |                | 1               |              | 6 100        | 19            |  |  |  |
| 2015. 7. 2    | 7.61 |                 |                |                 |              | 0 66         | 30            |  |  |  |
|               | 7.74 | a second second |                |                 |              |              | 26            |  |  |  |
| 2015. 8. 10   | 7.42 | 1162            |                | 10.2            |              | 1.5          | 140           |  |  |  |
|               | 7,33 |                 |                |                 |              |              | 168           |  |  |  |
| 2015. 8. 12   | 8.09 | 71.4            |                | 0.094           |              | Nika         | 22            |  |  |  |
|               | 7.71 | 27              |                | 1 21            |              | COLUMN T     | 30            |  |  |  |

|             | 测量参数  |       |                  |        |        |        |        |  |  |
|-------------|-------|-------|------------------|--------|--------|--------|--------|--|--|
| 取样时间        | рH    | COD ( | BOD <sub>5</sub> | NH3-N  | TN     | TP     | TSS    |  |  |
|             | P.1   | mg/L) | (mg/L)           | (mg/L) | (mg/L) | (mg/L) | (mg/L) |  |  |
|             | 8, 1  | 16.3  |                  | 1.11   |        | 0.155  | 16     |  |  |
|             | 8.09  | 17.5  |                  | 0,9    |        | 0, 135 | 26     |  |  |
|             | 8, 06 | 23.7  |                  | 0,681  |        | 0, 174 | 11     |  |  |
| 2016, 3, 14 | 8.5   | 15,8  |                  | 0, 124 |        | 0,131  | 30     |  |  |
|             | 8, 41 | 13.3  |                  | 0.068  |        | 0, 127 | 12     |  |  |
|             | 8, 57 | 18, 2 |                  | 0.42   |        | 0,19   | 12     |  |  |
|             | 8.31  | 14.1  |                  | 0.491  |        | 0,16   | 18     |  |  |
| 2016, 3, 25 | 9, 29 | 29.3  |                  | 0.786  |        | 0.274  | 41     |  |  |
|             | 9.17  | 26    |                  | 0, 283 |        | 0,176  | 38     |  |  |
|             | 9.05  | 28.4  |                  | 0.411  |        | 0.219  | 71     |  |  |
|             | 9,12  | 29    |                  | 0, 335 |        | 0,274  | 56     |  |  |
| 2016, 3, 28 | 8, 59 | 17.7  |                  | 0, 511 |        | 0,122  | 35     |  |  |
|             | 8, 87 | 12.8  |                  | 0.153  |        | 0.114  | 30     |  |  |
|             | 8,8   | 16.5  |                  | 0.499  |        | 0,098  | 34     |  |  |
|             | 8,82  | 19.8  |                  | 0, 479 |        | 0.21   | 41     |  |  |
| 2016. 3. 31 | 8, 49 | 16.7  |                  | 0.257  |        | 0, 113 | 8      |  |  |
|             | 8, 60 | 18    |                  | 0, 205 |        | 0, 108 | 12     |  |  |
|             | 1.58  | 13, 5 |                  | 0,619  |        | 0, 129 | 10     |  |  |
|             | 8.69  | 15.5  |                  | 0 38   |        | 0.157  | 15     |  |  |

# So Proud of it



### Case Study: Jiangsu University

#### Campus

### Applying Advanced Bioretention System to Clean Yudai

#### River

The Source of Yudai River – Mengjiawan Reservior



#### Project Description:

Yudai River is a small stream originates from Mengjiawang Reservior, passing through Jiangsu University Campus before entering to Yangtze River. Due to urbanization and nonpoint source pollution, the reservoir is polluted, very eutrophicated and a lot of algae. This project utilizes stormwater runoff as resource to increase reservoir's environmental capacity by treating the runoff using Advanced Bioretention System. The reservoir is also a storage for extreme storm event.





Section passing through Jiangsu University Campus

#### Upstream

### Yudai River

#### Advanced Bioretention System (ABS)



建力流注道法形面面 Gravity Swale Section

#### Advantages:

1. Treating runoff as well as reservoir water as

needed to remove 95% of TSS;

- 2. It was designed for gravity flow;
- 3. Landscape can be added to ABS;
- 4. Habitat was created.



| CHINESE LITERATURE LOADING EMCs 国内研究中对污染物负荷EMCs的取值                     |      |     |      |       |      |         |  |  |  |
|------------------------------------------------------------------------|------|-----|------|-------|------|---------|--|--|--|
| Mean of 20 studies                                                     | TSS  | COD | TP   | NH4-N | TN   | Other N |  |  |  |
| Mean inflows平均入水浓度                                                     | 147  | 194 | 1.25 | 24.1  | 27.2 | 3.01    |  |  |  |
| Mean Outflows平均出水浓度                                                    | 72   | 108 | 0.83 | 13.7  | 15.1 | 1.48    |  |  |  |
| Percent Removals 移除率                                                   | 51%  | 44% | 33%  | 43%   | 44%  | 51%     |  |  |  |
| SATURATED VERTICAL FLOW CONSTRUCTED WETLAND LITERATURE<br>重力流湿地对污染物去除率 |      |     |      |       |      |         |  |  |  |
| Mean of 16studies                                                      | TSS  | COD | TP   | NH4-N | TN   | NO3-N   |  |  |  |
| Percent Removals 移除率                                                   | >90% | 83% | 58%  | 73%   | 51%  | 68%     |  |  |  |

### Yudai River



### Under Construction



### Mengjiawan Reservior



### Mengjiawan Reservior

Advanced Bioretention System (ABS)



### Yudai River in Jiangsu University Campus Advanced Bioretention System (ABS)

